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1 Introduction

Mortality in the first 28 days of life accounts for over 2.5 Million deaths each year and

contributes an increasing share of under-5 deaths globally (Wang et al., 2016). Most neonatal

deaths are believed to be preventable at comparatively low cost (Bhutta et al., 2014), but simply

reducing financial barriers to accessing general health care around birth in low-income coun-

tries often results in no- or small improvements (e.g., Powell-Jackson et al., 2015; Fitzpatrick,

2018).1 Research is therefore needed to shed light on what specific interventions work at scale

and for whom.

One leading cause of neonatal mortality is blood infection or “neonatal sepsis”. It is esti-

mated to kill 400,000 children annually, most of them in very low-income settings where un-

sanitary delivery- and living conditions are common (Liu et al., 2016).2 Hopes of eradication

were high after a simple preventive measure was found to massively reduce neonatal mortality

in three randomized controlled trials (RCT) in South Asia (Mullany et al., 2006; El Arifeen

et al., 2012; Soofi et al., 2012). But these hopes faded away after two further RCT in Southeast

Africa found no effect of a similar intervention — namely, the preventive application of a lo-

cal disinfectant called chlorhexidine (CHX) to the umbilical cord stump (Semrau et al., 2016;

Sazawal et al., 2016; Osrin and Colbourn, 2016).

This paper answers three open questions: (i) Can a CHX cord care intervention reduce

neonatal mortality outside experimental conditions?; (ii) What variables can, empirically, best

account for the heterogeneity of the effect of CHX on neonatal survival?; and (iii) Could an al-

ternative targeting policy to the World Health Organization’s past and current guidelines further

reduce neonatal mortality?

Our first contribution is to estimate the effect of a CHX cord care intervention outside an

experimental setting, which we do in a nationally representative sample for Nepal. Concerns

about the scalability of experimental findings typically emphasize factors which lead to smaller

1This is in contrast to historical evidence showing that health interventions around birth dramatically improved
neonatal survival in high-income countries (Lazuka, 2018, 2021).

2Verbal autopsy estimates of causes of neonatal death carried out in various districts of Nepal outside experi-
mental trials report between 38-47% of neonatal deaths due to perinatal infection or sepsis specifically, compared
to 26-38% across selected areas of India, Malawi and Bangladesh (Fottrell et al., 2015; Khanal et al., 2011; Erchick
et al., 2022).
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treatment effects at scale (Al-Ubaydli et al., 2017). But in the case of trials of preventive health

care measures, the treatment effect might be muted due to the lack of a pure control group

(El Arifeen et al., 2012; Semrau et al., 2016). For instance, subjects involved in CHX trials are

referred to the hospital if signs of cord infection appear during the frequent research team visits.

Indeed, in both trials finding no significant effect on mortality, the authors note that the neonatal

mortality rate (NMR) was much lower than in the most recent Demographic and Health Survey

for the relevant area — even in the control group. Many factors may therefore lead to differ-

ences in CHX- and other preventive treatment effects in- and outside an experimental setting,

in a direction that is unclear a priori.

Our second contribution is to apply recently developed machine-learning (ML) techniques

(Athey et al., 2019; Athey and Wager, 2021) to understand how CHX treatment effects depend

on observable characteristics of individuals and/or districts — which vary much across our

nationally representative sample — and then identify an optimal targeting policy that takes this

heterogeneity into account. Meta-analyses of existing randomized trials (Imdad et al., 2013;

Sankar et al., 2016; López-Medina et al., 2019) have important limitations due to the small

number of included studies and the possibility that heterogeneous results by place of birth —

the main source of heterogeneity identified in existing meta-analyses — may be confounded

by other differences across studies. The use of ML methods to study heterogeneous treatment

effects has two main advantages: embedded robustness checks in the form of cross-validation

and a high degree of flexibility in identifying sources of heterogeneity (Varian, 2014; Athey and

Imbens, 2016). In our case, causal forest estimates show for instance that stark differences in

average predicted treatment effects by home vs. facility delivery hide that many babies born in

facilities may also benefit from CHX cord care, so that targeting implementation beyond babies

born at home would further reduce neonatal mortality.

Our third contribution is to take the findings obtained in our nationally-representative,

Nepalese observational data, and use them to predict the effect of implementing the same pro-

gram in the five regions in- and outside Nepal where CHX trials have been carried out. More

specifically, we report predicted treatment effects of a program similar to that rolled out in

Nepal — including similar patterns of compliance conditional on covariates — if it were hy-
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pothetically extended to samples from the five RCT regions. To do so we use the extrapolation

approach due to Dahabreh et al. (2020) as implemented in Tibshirani et al. (2022), which pro-

vides doubly robust treatment effect estimates that put more weight on estimates based on data

points that are more similar to the out-of-sample observations. Given differences in the exact

nature of the intervention between the Nepalese roll-out and the trials, as well as, crucially, the

absence of a pure control in the various trials, the effects we predict should not be expected

to match experimental findings closely even if we had access to the experimental microdata

and our heterogeneity analysis based on the Nepalese roll-out was fully externally valid.3 Our

exercise however serves as a sanity check on our heterogeneity analysis as well as illustrates

the informativeness for external samples of the treatment effect heterogeneity uncovered in our

quasi-experimental setting.

The first country to introduce CHX cord cleansing nationwide is Nepal. We exploit plausi-

bly exogenous variation in the timing of the expansion of the Chlorhexidine Navi(Cord) Care

Program across districts of Nepal using data from the nationally representative 2016 Nepal De-

mographic and Health Survey (DHS). After piloting the program in 4 out of 75 districts from

late 2009, this CHX cord care program was quickly scaled-up across the rest of the country

(see Appendix Figure A.1). By 2015, 75 percent of the population was covered by the program

(Department of Health Services, 2015).

We estimate the effect of the Chlorhexidine Navi(Cord) Care Program (CHX-NCP) using

the estimator developed by Borusyak et al. (2024) and find that, overall, the CHX program

decreased neonatal mortality by 1.5 percentage points or 36 percent compared to the control

group mean. Our conclusions are robust to comprehensive robustness checks. In particular, we

find no significant differences in pre-treatment trends between treated and control cells, that

the CHX program is not associated with a decrease in mortality between 2 and 12 months after

birth, that estimates based on within-mother variation in treatment exposure are very similar

to estimates exploiting within-district variation, and that the effect of the CHX program is ob-

3A growing body of work develops methods to systematically combine observational and experimental data to
address the shortcomings of one- and/or the other or reconcile them. Abstracting from the differences in treatment
between CHX trials and the Nepalese roll-out, lack of access to the relevant experimental microdata means that
we are unable to implement the innovative methods proposed by Athey et al. (2020); Gechter and Meager (2022);
Kowalski (2023).
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served independently of other neonatal health interventions. We also reach similar conclusions

based on “traditional” linear two-way fixed effects model estimates.

Turning to our heterogeneity analysis, we find that, when splitting the sample between

predicted home- and institutional deliveries, children only benefit from CHX application, on

average, if they are predicted to be born at home, in line with WHO recommended use during

2013-2022. Place of delivery is however likely to proxy for risk factors such as hygiene condi-

tions and healthcare at- and shortly after birth and health endowment at birth. To better describe

the treatment effect heterogeneity we observe, we turn to machine learning. Our causal forest

detects significant heterogeneity in treatment effects, and when comparing the lowest- with the

highest treatment effect tertiles, we find large, statistically significant treatment effects in the

two top tertiles of treatment effect magnitude but no significant effect in the bottom tertile. Im-

portantly, only a quarter of the variation in conditional treatment effects comes from differences

in variables which the WHO has ever recommended considering to guide the use of CHX.

We then apply Athey and Wager (2021)’s approach to identify a targeting policy which

would asymptotically result in the largest gains in neonatal survival which could be obtained

for a given level of policy complexity, and compare this optimal policy — from the point of

view of neonatal survival — to past and present WHO recommendations. We find that WHO-

recommended policies effectively target about a third of the population with returns to treatment

as high as any other but that they miss many children whose survival chances could significantly

benefit from CHX treatment.

Finally, after applying the causal forest to our nationally representative Nepalese dataset, we

take advantage of the international comparability of the DHS and predict doubly robust average

treatment effects of implementing a program similar to the Nepalese CHX national roll out in

five different DHS samples corresponding to the subnational regions and time periods where

the five CHX trials took place. We predict large, statistically significant decreases in neonatal

mortality in the three regions where CHX trials led to significant decreases in mortality and we

predict much smaller, statistically insignificant decreases in mortality in the two regions where

CHX trials failed to decrease neonatal mortality.

In the next section, we give an overview of early life mortality trends and CHX cord care
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in Nepal. Section 3 presents the data and identification strategy. The regression results for the

average treatment effects and robustness checks are reported in Section 4. Section 5 explores

heterogeneity in the effect of CHX application using machine learning techniques and derives

lessons for policy targeting. Section 6 extrapolates our quasi-experimental heterogeneity anal-

ysis to samples drawn from the five RCT studies settings and compares these predictions with

experimental estimates of the effect of the trialed interventions. Section 7 concludes.

2 Background

2.1 Evolution of Neonatal Mortality in Nepal

Nepal is a landlocked country situated between China and India which is home to 28.1

Million people. The country’s Human Development Index ranks only 143 out of 191 (in 2021).

The country saw a long period of reduction in NMR which ended in 2005, when it was

followed by a period of stagnation until 2010 (Figure 1). This stagnation came to an end in

2011, as NMR dropped to 21 per 1,000 during 2012-2016 — a 36% decline relative to the

previous 10-year period Ministry of Health [Nepal] and New ERA and ICF (2017).

The sharp decrease in NMR from 2011 to 2016 coincides with the acceleration of the roll-

out of CHX cord application through the Chlorhexidine Navi(Cord) Care Program (CHX-NCP)

(see Figure 1). Strikingly, since the completion of the program roll-out, there has been no

further reduction of NMR according to the latest figures (Ministry of Health and Population,

Nepal; New ERA; and ICF, 2022).

2.2 Details of the Chlorhexidine Cord Care Program

Program Objective and Components. CHX-NCP was a $3.9 million program funded mainly

by bilateral donors (US, Norway, Canada, UK) and the Bill & Melinda Gates Foundation and

was designed to support the Government of Nepal to scale up the use of CHX for cord care

across districts nationwide. The aim of the program was for all newborns to receive a single

CHX gel application on the day of birth irrespective of place of birth. The CHX roll-out pro-

gram (i.e., our “treatment”) consisted of all the technical support needed for: the delivery of
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CHX doses, the training of staff to apply and counsel patients on CHX application, and promo-

tion of CHX application — CHX cord care products were neither available nor promoted in a

district prior to the program roll-out.
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Figure 1: Neonatal mortality and CHX-NCP coverage
Notes: Authors calculations based on Nepal DHS 2016 microdata and JSI administrative
records of the district roll-out of CHX-NCP.

Implementation. The program was implemented by JSI Research & Training Institute, Inc

in partnership with the Nepalese Department of Health Services, international NGOs and a

Nepalese pharmaceutical company which produced the CHX gel locally. For home births, CHX

gel doses were distributed to pregnant women during antenatal contact — in general, during

antenatal care visits by female community health workers in the last two months of pregnancy

(Hodgins et al., 2019).4,5 The CHX training of health workers lasted between three hours and

one day and to reduce costs and increase program sustainability, an effort was made to integrate

training and monitoring activities into broader maternal and newborn health programs, and

more specifically into the Community-Based Newborn Care Program (CB-NCP) (JSI Research

4Eighty four percent of women who gave birth in the five years leading to the 2016 DHS received antenatal
care and 69 percent received four antenatal care visits or more (Ministry of Health [Nepal] and New ERA and
ICF, 2017).

5Appendix Table A.1, report results showing that CHX-NCP was not accompanied by an increase (or de-
crease) in the number of antenatal care visits.
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& Training Institute, 2017; JSI, 2017; Hodgins et al., 2019). In Section 4.2.1 we estimate

the effect of CHX in places where the CB-NCP and the other main neonatal health program

rolled out in the later part of our study period (CB-IMNCI) were not in place and reach similar

conclusions as in our main specification. We also test for complementarities between the three

programs and find none.

Compliance with CHX Application. Estimates of actual CHX application in program dis-

tricts vary much and, for home deliveries, an important limitation is that there is no record of

application and that maternal recall is unlikely to be reliable for non-salient events (Beckett

et al., 2001).6 Coverage estimates suggest that it may have peaked in 2014/2015, as estimates

range from 75 percent of home deliveries and 96 percent of facility deliveries (HIMS (2014),

as cited in Khanal (2015)) to 75 percent of all births according to Department of Health Ser-

vices (2015) to only about 40 percent of home births and 90 percent of facility births in 2017

according to Hodgins et al. (2019) so that our estimates of the effects of the program should

be interpreted as intention-to-treat effects of actual CHX application — arguably the parame-

ter of interest from a policy point of view. The coverage is however consistently estimated to

be higher among health facility deliveries, so that heterogeneity in treatment intensity cannot

account for the larger decrease in NMR observed among predicted home births.

Why Did the Program Extend to Institutional Deliveries? The benefits of CHX cord care

are likely to be larger for home births as more hygienic practices should generally be expected

in birthing facilities than at home. There were, however, sufficient concerns about cord care to

warrant implementation of the CHX cord care program irrespective of place of delivery. This

could be due to the potential for infection to occur in hospital settings (e.g., due to insufficient

hand hygiene, Khanal and Thapa, 2017) and/or the possibility of infection after the newborn

has left the birthing facility.

6In the DHS, women who gave birth within five years of the interview are asked, among many other things,
whether anything was placed on the stump after the umbilical cord was cut, and if so, what substance was applied.
There is good reason to think that answers to these questions are not reliable: While CHX was neither available nor
promoted in a district prior to the roll-out of CHX-NCP, as many as 30 percent report that CHX was applied to the
stump of the newborn in untreated district-by-time cells. Meanwhile only 45 percent report that CHX was applied
to the stump of the newborn in treated district-by-time cells, which is about half what is found in administrative
records.
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2.3 Other Neonatal and Child Health Programs

Identification of Relevant Programs. Nepal has a long history of active programmatic efforts

to improve maternal and child health. To ensure that we capture the effect of chlorhexidine cord

care independently of any other intervention, a thorough identification of programs that may

have contributed to recent decreases in NMR was done by the Kathmandu-based Center for

Research on Environment, Health and Population Activities (CREHPA) in two steps. First,

all annual reports produced by the Department of Health since 2013 were analyzed in detail

to identify candidate explanations for the recent decrease in NMR. Second, semi-structured

interviews with 12 in-country neonatal and maternal health experts — from, among others,

the Family Welfare Division of the Department of Health Services, the WHO, UNICEF, and

Children and Maternity hospitals — were carried out in order to collect their specialist views

on the most likely reason(s) for the NMR reduction.

Relevant Programs and Implications for our Analysis. Eleven interventions were identi-

fied by key informants, including CHX-NCP. These are summarized in Appendix Table A.2.

Of these, three were being implemented in all districts prior to the roll-out of CHX cord care

(CB-IMCI, Birth Preparedness Program and Safe Delivery Incentive Program), two were im-

plemented in all districts of Nepal at the same time so that any effect they may have on neonatal

mortality is captured by time fixed effects (Nyano Jhola and Aama and Newborn Care), and

one (Rural Ultrasound Program) affects only 190 births in our sample, of whom 108 are also

treated by the CHX cord care program (out of 3,255 treated observations). Three are nutrition

programs targeting pregnant women and children up to two years old (Nepal Agriculture and

Food Security Project, Sunaula and Suaahara) — therefore less likely to influence neonatal

mortality specifically. In robustness checks, we control for all these programs except the ones

whose implementation is subsumed in time fixed effects (see Appendix Figure A.2). The last

one is a comprehensive program targeting neonatal health (CB-NCP), which was subsequently

progressively integrated into CB-IMCI and rebranded “Community Based Integrated Manage-

ment of Newborn and Childhood Illness” (CB-IMNCI). We control for the implementation of

these two programs (CB-NCP and CB-IMNCI) throughout the main analysis, show that our re-

sults regarding CHX are robust to whether or not we control for these programs (or covariates
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more generally), robust to restricting the analysis to observations outside areas implementing

either CB-NCP or CB-IMNCI, and show in Section 4.2.1 that there is no evidence of comple-

mentarities between CHX cord care and the presence of these programs in the district.

2.4 Evolution of World Health Organization Guidelines

WHO guidelines have evolved substantially in the last fifteen years. Prior to 2013, the

only recommended approach to cord care was to keep the cord clean and dry. In 2013, the

WHO started recommending the application of CHX in some cases — namely home births in

settings with neonatal mortality above 30 per 1000 (WHO, 2015). But since 2022, the WHO

recommends CHX cord care only in regions where the application of harmful substances such

as mustard oil, turmeric or animal dung to the stump is common (WHO, 2022).

Why Not Treat All Births Everywhere? While international estimates of the direct cost of

CHX application are low, the WHO’s recommendation of restricting the use of CHX can be

understood as balancing proven benefits against broader costs, in the same vein as its early

stance on face masks during the COVID-19 pandemic (WHO, 2020).7 Broader costs of CHX

cord care include the behavioral risk of unintentionally encouraging the application of other,

potentially dangerous substances, as well as the opportunity cost of diverting human, logistical,

and financial resources away from other essential medicines and tasks in an area where the gap

between recommended health care and practice is already large (Friberg et al., 2010; Requejo

et al., 2015).

3 Data and Identification Strategy

3.1 Data

The 2016 Demographic and Health Survey (DHS) of Nepal is a nationally representative

survey that collected detailed pregnancy histories of all women age 15-49 found in sampled

7International estimates of the cost of implementing CHX range from US$0.23 for a single dose to US$2.9
when including all related fixed and variable costs (Hodgins et al., 2013; Federal Ministry of Health, 2016;
Callaghan-Koru et al., 2019). This is roughly similar to the cost of introducing a single vaccine in low-income
countries, which varies between $0.16 and $2.54 according to Vaughan et al. (2019).
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households, as well as comprehensive data on the demographic and socioeconomic character-

istics of the household and its members (MoH, New ERA and ICF, 2017). The dataset includes,

for each child ever born to the interviewed women, dates (month and year) of birth and death,

if applicable. Detailed information on antenatal and postnatal care is also collected for births

occurring within 5 years of the interview, including place of delivery. In the absence of compre-

hensive vital statistics systems, the DHS is the main source of information on child mortality

in Nepal as in many other developing countries.

The survey collected data on a total of 26,028 births. We drop 366 multiple births and

118 births to mothers who are either less than 15 or 45 and above because the risk of neonatal

mortality is much higher among these unusual births, and drop 116 births occurring within one

month of the interview date and thus not fully exposed to the risk of neonatal death. While

recall error is unlikely to be an issue for such a salient event in the life of a woman as the

death of a newborn, we restrict our main analytical sample to births that occurred within 25

years prior to the date of interview, resulting in a sample of 23,465 births.8 Robustness checks

varying this time window by 5 years on either side show that our findings are not sensitive to

this sample selection criteria (see Section 4.2.2).

We merge the DHS microdata with administrative data on the implementation of all the

main programs targeting maternal and newborn health in Nepal listed in Section 2.3. Dates of

the district-level implementation of each program were collected from various Department of

Health Annual Reports. For CHX-NCP, which was administered by JSI, we obtained roll-out

dates from the CHX-NCP program director.

The variable means for our sample (presented in Appendix Table A.3) highlight that the

sample at hand has very low levels of human development, with 57 percent of children having

mothers with no formal education, 41 percent living in rural areas, and one in five children

being born to a teenage mother. Forty-eight percent of children are female, which is close to

what would be expected given the widely observed natural sex ratio at birth (49 percent female).

8The sample is 23,449 when using the Borusyak et al. (2024) estimator as 16 observations are dropped in the
last two periods due to there being no never treated group.
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3.2 Identification Strategy

We exploit the staggered roll-out of CHX-NCP across districts over time to estimate the

average treatment effect on the treated (ATT) using the estimator developed by Borusyak et al.

(2024) (henceforth: BJS). Under the standard parallel trends and no anticipation effect as-

sumptions, the BJS estimator not only provides unbiased estimates in difference-in-differences

designs such as ours even in the presence of heterogeneous causal effects, it is also efficient

(Borusyak et al., 2024).9 For completeness, in robustness checks we also report estimates from

two-way fixed effects ordinary least squares, which lead to slightly larger estimates but other-

wise similar conclusions.

The dependent variable midt is an indicator equal to 1 if child i dies by age one month

(allowing for “heaping” at one month) and zero otherwise. The treatment indicator, CHXdt is

an indicator equal to 1 if CHX-NCP was rolled out in the child’s district by the month the child

was born. We control for district fixed effects, Dd , and month×year of birth fixed effects, Tt

— e.g., one fixed effect for the equivalent of January 2012 in the Nepali calendar, another for

February 2012, etc... We also control for a set of covariates, Xidt , comprising all controls listed

in panels A and B of Table A.3, and which cover child-, mother-, household characteristics

and district-time varying controls such as exposure to health programs other than CHX-NCP.

We use the did_imputation implementation of the BJS estimator in Stata, where the ATT is

estimated in the following three steps:

1. Using data on the not-yet-treated cells only, we estimate a model of potential outcomes

using the common two-way fixed effects approach with controls. I.e. we estimate midt =

α+βCHXdt +D′d∆+T ′t Γ+X ′idtΛ+ εidt .

2. Based on the estimated coefficients from 1 we extrapolate the outcomes for the treated

units in the absence of treatment. We then compute the difference between the observed

outcome and this predicted outcome: τdt = mdt− m̂dt(0) for the treated units.

3. We calculate the average treatment effect by averaging τdt across the relevant cells.

9Borusyak et al. (2024)’s use of all pre-treatment cells is especially valuable in our set-up where each district-
month cell has few observations. This rules out estimators which only use the last pre-treatment period to construct
the counterfactual.
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In the main specifications we present the ATT as the average τdt across all treated cells and

report standard errors clustered at the district level in parentheses.

Identifying Assumptions. Since we control for time- and district fixed effects, identification

relies on the absence of time-varying omitted factors correlated with the timing of treatment.

Regressing the treatment indicator on observable characteristics, we find that, other than the ex-

pected positive correlation between the CHX cord care program (CHX-NCP) and the program

onto which CHX-NCP added its operations whenever possible to save on costs (CB-NCP), the

treatment is only weakly correlated with observable characteristics.10 Treated newborns are

significantly more likely to have a mother with an ethnicity from the residual ”other” group,

somewhat less likely to be found in rural areas and somewhat more likely to have a mother

with primary education. However, these differences are small and there is no clear pattern of

selection in terms of socio-economic status (See Appendix Table B.2). In Section 4, we report

on a number of robustness checks which indicate that our findings are unlikely to be biased by

a correlation between district trends in early life health and the timing of CHX-NCP roll out.

4 Average Treatment Effect Results

4.1 Main Estimates

Table 1 reports our baseline estimates. In column (1) we show results from estimating

a specification without any controls and find that CHX-NCP significantly reduces neonatal

mortality by 1.0 percentage points. In column (2) we show the results when adding the full set

of controls. Using this specification, we find that, conditional on controls, CHX-NCP decreases

neonatal mortality by 1.5 percentage points or 36 percent of the control mean. In the table we

also report estimated coefficients for treatment effects in the six periods before CHX-NCP was

introduced in the district. None of these estimates is significantly different from zero.

Having established significant average beneficial effects of CHX-NCP at scale, we assess

treatment effect heterogeneity in columns (3) and (4) of Table 1. In line with findings from a

10In Section 4.2.1, we discuss the role of other programs. We find no evidence of complementarities and find
that our results hold whether or not we include district-cells where CB-NCP is present.
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meta-analysis of the five existing trials (e.g. Imdad et al., 2013), between 2013 and 2022 WHO

guidelines only recommended CHX cord care for home deliveries in areas with rates of neonatal

mortality above 3 percent. Assessing treatment effect heterogeneity by place of delivery is

therefore a useful first step to shed light on the desirability of this recommendation outside

experimental settings. Place of delivery is only collected by the DHS for recent births (i.e.,

within five years of the survey). To use data covering a longer period of time and thus increase

statistical power, we predict whether a child was delivered at home using a linear probability

model. The covariates included and estimated coefficients are reported in Appendix Table A.4.

In the sample for which we know the place of delivery, when predicting a home birth based on

a probability of home delivery above 0.5, we predict place of birth correctly in 76 percent of

cases (see Appendix Figure A.4). To account for the uncertainty in classifying births based on

their predicted- rather than observed place of delivery, we obtain bootstrapped standard errors

clustered at the district level.11 In Columns (3) and (4) we split the sample between births

predicted to take place in a facility (Column 3) and at home (Column 4). We find a near-zero

estimated effect of CHX among predicted facility deliveries (0.2 percentage point) while the

estimated decrease in the probability of neonatal mortality among predicted home deliveries

remains statistically significant and increases to 2.7 percentage points.

We also carry out a falsification test based on the fact that cord infection (omphalitis) pri-

marily affects neonates, but is uncommon among older infants (Painter and Feldman, 2019).

CHX application, which narrowly targets omphalitis, should therefore decrease neonatal mor-

tality but not mortality between 2 and 12 months of age — whereas unobserved time-varying

improvements in maternal and child health should decrease both. In Column (1) of Table 2, the

dependent variable is an indicator equal to 1 if the child died between 2 and 12 months of age

and zero if they survived beyond infancy — the 12 first months of life — and find that babies

born under the CHX-NCP program are no more or less likely to die between 2 and 12 months

(point estimate of 0.001). In column (2), we estimate the total effect of CHX-NCP on overall

mortality in the first year of life and find a statistically significant decrease in infant mortality

by 2.0 percentage points. In column (3) we show results from a specification where we do

11Namely, we draw 500 random samples from the original dataset, and, for each random sample, predict
whether the child is delivered at home or not and then re-estimate the ATT.
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Table 1: The effect of CHX-NCP on neonatal mortality exploiting variation across districts
and across time, by predicted place of birth

(1) (2) (3) (4)

t ≥ CHX introduction -0.010∗∗∗ -0.015∗∗∗ 0.002 -0.027∗∗

(0.004) (0.006) (0.010) (0.013)
t−1 0.017 0.015 0.025 0.013

(0.024) (0.024) (0.039) (0.050)
t−2 0.001 -0.004 0.008 -0.012

(0.018) (0.018) (0.023) (0.033)
t−3 -0.007 -0.009 0.015 -0.044

(0.018) (0.018) (0.030) (0.037)
t−4 0.002 -0.001 -0.000 -0.008

(0.032) (0.031) (0.037) (0.051)
t−5 -0.010 -0.013 -0.024∗ -0.006

(0.027) (0.027) (0.015) (0.059)
t−6 0.015 0.009 0.019 0.025

(0.024) (0.024) (0.025) (0.055)

P-value 0.978 0.983 0.473 0.929
Observations 23,449 23,449 10,855 12,481
MDV 0.042 0.042 0.033 0.050

Sample All All PH < 0.5 PH > 0.5
Controls No Yes Yes Yes
Month of birth FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Notes: All specifications are estimated using the BJS (Borusyak et al., 2024) imputation
estimator as described in the main text. P-value shows the p-value for the joint test that
all lags are zero. MDV is the mean of the dependent variable among untreated individu-
als. PH is the predicted probability of being born at home based on estimates reported in
Column (2) of Table A.4. Standard errors clustered at the district level in parentheses. In
columns (1) and (2) we report analytical standard errors and in columns (3) and (4) we re-
port bootstrapped standard errors based on 500 iterations to account for the predicted place
of delivery. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗ p<0.05, and
∗∗∗ p<0.01.

not allow for heaping at age at death at 1 month old and still find a comparable reduction in

neonatal mortality of 1.2 percentage points.

In column (4) of Table 2 we show results from an OLS estimation of a linear two-way

fixed effects model.12 The coefficient on the treatment indicator is only slightly larger than the

comparable results obtained with the BJS estimator in column 2 of Table 1. In Appendix B

we show detailed linear two-way fixed effects results, including subgroup results by predicted

12Namely, we report results obtained when estimating linear probability models of the form midt = α +
βCHXdt +D′d∆+ T ′t Γ+X ′idtΛ+ εidt including all observations irrespective of treatment status and availability
or not of not-yet-treated cells.
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Table 2: Alternative specifications and falsification tests

Dependent variable: mortality

Falsification Infant Mort. No Heaping OLS

month∈]1,12] month∈[0,12] month<1 month∈[0,1]

(1) (2) (3) (4) (5)

t ≥ CHX introduc-
tion

-0.001 -0.020∗∗∗ -0.012∗∗ -0.018∗∗∗ -0.020∗∗∗

(0.003) (0.007) (0.005) (0.006) (0.004)

Observations 21,635 22,546 23,449 23,465 21,209
MDV 0.016 0.058 0.037 0.042 0.045

Controls Yes Yes Yes Yes Yes
Month of birth FE Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes No
Mother FE No No No No Yes
Estimator BJS BJS BJS OLS OLS

Notes: BJS is the Borusyak et al. (2024) imputation estimator as described in the main text. OLS is the ordinary
least squares estimator. MDV is the mean of the dependent variable among untreated individuals. Standard errors
clustered at the district level in parentheses. The sample in column (1) excludes neonatal deaths. The samples in
columns (1) and (2) exclude births that have taken place less than 12 months before the interview, since they are
not fully exposed to the risk of infant mortality. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗

p<0.05, and ∗∗∗ p<0.01.

place of delivery. As a final robustness check, column (5) of Table 2 shows the results from

estimating a specification where we exploit variation across siblings in the availability of CHX

at birth by estimating a linear mother fixed effects model with OLS. This approach suggests a

reduction in neonatal mortality by 2.0 percentage points.

4.2 Further Robustness Tests

4.2.1 Other Programs

We explore in detail the potential interaction between CHX and the broader healthcare

programs concerned with neonatal mortality summarized in Table A.2. First, we inspect vi-

sually the changes in neonatal mortality over time against the roll-out of both CHX care and

these broader programs (CB-NCP and CB-IMNCI, in which CB-NCP was later integrated). As

shown in Appendix Figure A.3, there is no decrease in neonatal mortality between 2009 and

2011, even though the coverage of CB-NCP goes from 8% to 49% during this period. After
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that, while CB-NCP’s coverage only increases by 14 percentage points between 2011 and 2016,

neonatal mortality decreases steadily as CHX coverage goes from 20% to 92% coverage. The

very rapid scale-up of CB-IMNCI between 2013 and 2016 is not accompanied by an acceler-

ation of the decrease in neonatal mortality. Second, we estimate the effect of the three health

programs separately and report the results in Appendix Table A.7. For completeness, we also

estimate the effect of CHX in the sample of births where neither CB-NCP nor CB-IMNCI are

present and the effect of CB-NCP where neither CHX nor CB-IMNCI are present and confirm

that CHX is effective in decreasing neonatal mortality independently of the presence of the

other programs, while we find no evidence that CB-NCP has any independent effect — consis-

tent with Paudel et al. (2017)’s findings that CB-NCP did not lead to significant improvements

in newborn care practices.

4.2.2 Further Specification Checks

In Appendix Figure A.2 we show that our conclusions are robust to the specification of

control variables and the sample selection. In Appendix Table A.5 we show that conclusions

are also robust to using survey weights, and in Appendix Table A.6 we show that conclusions

also hold when using stacked DHS samples to predict the place of delivery instead of only using

the 2016 DHS sample (See also Appendix Table A.4). Finally, Appendix Figure A.5 shows an

event study chart depicting the ATTs by month. Although the estimates are somewhat noisy

due to the small number of observations per month× year cells, we see a clear drop in neonatal

mortality after the introduction of CHX.

In the next section, we investigate systematically the heterogeneity of the benefits of CHX

and what it implies for optimal policy targeting.

5 Treatment Effect Heterogeneity and Lessons for Policy

Targeting

In the previous section, we documented large average treatment effects on the treated, and

when splitting the sample by place of birth, we found that the effects of CHX on neonatal
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mortality were driven by the home birth sample. Place of birth is however likely to proxy for

other factors.13 We now investigate heterogeneous treatment effects more systematically using

a data-driven approach based on recent developments in the machine learning literature and

compare our findings with factors associated with neonatal deaths caused by sepsis across six

districts of Nepal studied in 2012/13 (Erchick et al., 2022).

5.1 Investigating Heterogeneity with Causal Forests

Place of delivery is likely to proxy for risk factors such as hygiene conditions including

the application of harmful substances to the stump, healthcare at- and shortly after birth and

health endowment at birth. To better understand the treatment effect heterogeneity we observe

and therefore potentially improve on current WHO recommendations for targeting, we also

consider heterogeneity along other dimensions. Given the absence of a pre-analysis plan, we

use a data-driven approach to study the heterogeneity by means of a causal forest (Athey and

Imbens, 2016; Tibshirani et al., 2021). The causal forest gives us estimates of the individual

Conditional Average Treatment Effect (CATE) — i.e., the ATE for observations with a given set

of individual- or district characteristics, which allows us to identify and describe who benefits

the most and the least from the treatment.

5.1.1 Conditional Average Treatment Effects Based on Causal Forests

Overview. We first use regression forests to “residualize” the treatment indicator and our

outcome of interest (neonatal mortality) — i.e., to purge them of variation coming from, in

our case, district- and month×year of birth as captured by fixed effects, and availability of

the two main neonatal health programs. Using these residuals as outcomes, we then estimate a

causal forest on potential outcome predictors or “features”. In addition to the individual sample

characteristics included as covariates in the analysis in Section 4.1, we also consider a rich set

of district-level features measured in the five years prior to the survey (see notes under Figure

3 for the full list).

13In principle, it could also proxy for compliance. But as discussed in Section 2.2, compliance estimates are
close to 100% in the case of facility births, where treatment effect estimates are smallest, thus suggesting that
different compliance rates are not a key driver of heterogeneity.

18



Building the Causal Forest. The building blocks of the causal forest are its trees. Each tree

is created by partitioning a 50% draw of the sample into leaves defined by the value taken by

a subset of features. The partitioning algorithm finds the combination of values taken by these

features which maximizes treatment heterogeneity across leaves and penalizes treatment effect

variance within leaves (Athey and Imbens, 2016). Following best practice, the fine-tuning of

the algorithm is done optimally without researcher input based on cross-validation.14

Diagnostic Tests. Before reporting on the heterogeneity patterns uncovered by this exercise,

we report results of diagnostic tests which indicate that the causal forest successfully captures

both average and heterogeneous treatment effects. More specifically, in panel A of Table 3

we show results of Chernozhukov et al. (2020)’s omnibus test for heterogeneity modified to

be applied in an observational setting following the procedure implemented in Tibshirani et al.

(2021). Intuitively we are estimating a linear regression of the individual’s treatment effect

predicted by the forest on the average predicted treatment effect (Mean Forest Prediction) and

the individual’s predicted deviation from the average treatment effect (Differential Forest Pre-

diction). If the forest captures the average treatment effect well and if there is treatment effect

heterogeneity that is also captured by the causal forest, both coefficients should be 1. In our

case both coefficients are close to 1 (and 1 is included in the confidence interval).

Doubly-Robust Average Treatment Effects. Panel B of Table 3 shows the Augmented

Inverse-Propensity Weighted (AIPW) Average Treatment Effects based on the causal forest.

The AIPW is doubly robust, meaning that it is a consistent estimator of the ATE as long as at

least one of (i) the propensity score or (ii) the outcome model, is correctly specified. Reassur-

ingly, our AIPW estimates are similar to our baseline specification (full sample: -1.9 percentage

points compared to -1.5 percentage points in Table 1, predicted home deliveries: -3 percentage

points compared to -2.7 percentage points in Table 1), even though for predicted facility births,

the AIPW is suggestive of CHX being somewhat effective (-0.7 percentage points, significant

at 5% compared to an insignificant 0.002 percentage points in Table 1).

14We estimate the causal forest using the gr f package in R (Tibshirani et al., 2021) with 2000 trees and all
other parameter settings selected based on cross-validation. We use 50% of the sample to grow each tree. The
splitting structure of the trees is determined on a 50% sub-sample of the tree sub-sample, after which the tree
is populated by the the other 50% to estimate the treatment effects. For the splits in the trees we consider 30
variables and we restrict the nodes to have at least 5 observations. Appendix C provides further details about the
causal forest procedure.
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Table 3: Causal forest fit & doubly robust average treatment effects

A. Omnibus diagnostic test for forest fit
Mean Forest Prediction 1.123∗∗∗

(0.255)
Differential Forest Prediction 0.677∗

(0.479)

B. Doubly Robust Average Treatment Effects
Full sample -0.019∗∗∗

(0.003)
Predicted facility births -0.007∗∗

(0.004)
Predicted home births -0.030∗∗∗

(0.004)
Notes: Panel A shows the results for the omnibus test inspired by equation 3.1
in Chernozhukov et al. (2020) modified to the observational setting and imple-
mented through the test calibration function from the grf library in R. Panel
B shows the Augmented Inverse-Propensity Weighted (AIPW) Average Treat-
ment Effects. Standard errors in parentheses. Asterisks indicate significance at
the following levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01. Note that, following
Athey et al. (2019), the significance levels in panel A. are for one-sided tests
where the null hypothesis is that the coefficient equals zero and the alternative
is that the coefficient is strictly positive.

5.1.2 Conditional Average Treatment Effects Heterogeneity

Overview. We now describe the rich pattern of heterogeneity in Conditional Average Treat-

ment Effects (CATEs). In doing so, we show which variables are most strongly associated

with CHX impact — showing, in particular, that the three variables used in WHO guidelines

are good predictors, but not the strongest predictors — and that there is much heterogeneity in

treatment effects within groups defined by place of birth.

Heterogeneity Between- and Within Place of Birth. Figure 2 shows the distribution of indi-

vidual CATEs for, respectively: the full sample, the sample of predicted home births, and the

sample of predicted facility births. We observe that a large fraction of the sample is estimated to

benefit from the treatment. However, the CHX programme is predicted to have a small or even

harmful effect for a non-negligible part of the distribution. Indeed, as with most public health

interventions, there are potential adverse consequences of CHX cord care. These include the

risk of encouraging the application of other, potentially harmful substances by departing from

the standard message of keeping the stump dry and clean, as well as the risk of diverting hu-

man, logistical, and financial resources away from other essential medicines and tasks in an
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area where the gap between recommended health care and practice is already large (Requejo

et al., 2015). As expected, the distribution is shifted to the left for births that we predict to

take place at home. Among those, very few are expected to have small or harmful treatment

effects. However, we also note that a large share of children predicted to be born at a facility

are estimated to benefit from the treatment.15

In sum, targeting treatment by place of delivery appears at first glance to be convenient and

likely effective in avoiding adverse consequences. But the results from the causal forest show

that there is substantial overlap in the home- and facility births treatment effects distributions

and hence that this targeting approach is a blunt policy tool which may be improved upon.

Figure 2: Distribution of CATEs by place of delivery
Notes: The distributions are estimated using bandwidth selected based on Silverman’s ‘rule of thumb’
(Silverman, 1986) and a gaussian kernel.

Individual- and District Predictors of Treatment Effects. We now turn to a broader char-

acterization of the treatment effect heterogeneity. In Table 4 we compare means for selected

variables across the first and third treatment effect tertiles. As expected from the distributions

reported above, in the first tertile, where we observe large benefits of the treatment, 76 percent

15Appendix Figure A.7 shows the distribution of treatment effects across each sub-sample by reporting ATEs
for each tertile of the overall- and birth place samples.
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of births are predicted to take place at home compared to only 25 percent in the third tertile.

Moreover, children in the first tertile are more often boys (unsurprisingly given that male new-

borns are more likely to die), and are often born to very young, less educated, rural mothers and

in districts with higher NMR. They are also more often found in districts where the application

of harmful substances to the umbilical stump is more common, although the difference between

tertiles (36% prevalence harmful substance application in the first tertile vs. 24% in the third

tertile) is less pronounced than for other covariates — suggesting that targeting treatment based

on this variable, as per the latest WHO guidelines, may not be optimal.

Contribution of Variables Used in WHO Guidelines to Heterogeneity. The treatment ef-

fect heterogeneity uncovered by the causal forest goes beyond well-known predictors of CHX

effectiveness, and in particular those used in WHO cord care recommendations (listed in Sub-

section 2.4). For instance, being predicted to be born at home explains 19% of the variation in

the predicted conditional average treatment effects (CATE), the district prevalence of harmful

substance application explains 9% of the CATE variation, and district NMR explains 5% of

the CATE variation whereas maternal education, for instance, explains 35% of the variation in

CATE (see Appendix Figure A.6).

5.2 Lessons for Policy Targeting

We now ask what the optimal targeting policy is according to the heterogeneous doubly-

robust treatment effects we estimate in the data and taking into account the uncertainty sur-

rounding these estimates.

Optimal Policy Definition and Method. Following the approach proposed by Athey and Wa-

ger (2021), we use the estimates of individual treatment effects from the causal forest (doubly-

robust scores) to find the optimal policy, allowing this policy to use a wide range of antenatal-,

delivery-, and postnatal care variables. A policy consists of a treatment allocation rule based

on covariates and the optimal policy is the allocation rule that leads to the difference in the

expected utility from this policy and the maximum expected utility which could be achieved
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Table 4: Covariate means across tertiles of CATEs

Tertile
First Third Difference P-val

AIPW -0.033 -0.001 0.032 <0.001
CATE -0.027 -0.007 0.020 <0.001
Control Neonatal Mortality 0.057 0.024 -0.033 <0.001
Female 0.408 0.528 0.120 <0.001
Predicted home delivery 0.759 0.254 -0.506 <0.001
Age: 15-19y 0.278 0.130 -0.148 <0.001
Age: 20-24y 0.388 0.461 0.073 <0.001
Age: 25-29y 0.212 0.288 0.076 <0.001
Age: 30-34y 0.091 0.096 0.005 0.321
Age: 35-39y 0.026 0.022 -0.004 0.131
Age: 40-45y 0.005 0.003 -0.003 0.006
Education: No education 0.857 0.211 -0.647 <0.001
Education: Primary 0.101 0.202 0.101 <0.001
Education: Secondary 0.038 0.438 0.400 <0.001
Education: Higher 0.004 0.150 0.146 <0.001
Rural 0.536 0.277 -0.259 <0.001
District: harmful substance use 0.361 0.240 -0.121 <0.001

Notes: The table shows covariate means for the first and third tertile of the sample based on the
estimated CATEs.

being asymptotically “small” (for a given policy class Π and population).16 We derive our op-

timal policies using the policy learning algorithm developed by Athey and Wager (2021) (and

implemented in R with the policytree function due to Sverdrup et al., 2020). In particular,

we split the sample into ten equally-sized folds and, for each fold, find the optimal policy using

data from the other k-1 folds and then apply this optimal policy to the left-out kth fold.

Variables Used for Targeting. We study policies obtained with three different sets of co-

variates. For the first policy, we allow the algorithm to select optimally who should be treated

based on the full set of individual- and district-level variables. For the second policy, we only

allow targeting based on district-level variables. Individual-level variables are likely to be of

less practical use for policy targeting, but reporting estimates which also use these individual

variables shows that targeting only by district-level variables does nearly as well. For the third

policy, we allow targeting based on all district variables except the district prevalence of harm-

16Where asymptotically “small” means “bounded on the order of
√

VC(Π)/n with high probability”, where
VC(Π) is the Vapnik-Chervonenkis dimension of class Π and n is the number of observations (Athey and Wager,
2021, p.135).
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ful substance application. Comparing the second- and third policies sheds light on the relevance

of the prevalence of harmful substance application specifically, which is the focus of the latest

WHO targeting recommendations (issued in 2022).

5.2.1 Comparing Optimal Policies with WHO Recommendations

Optimal Targeting Variables. To fix ideas, in Figure 3, we show the optimal policies ob-

tained using all the district-level variables (but no individual characteristics) for the first and

tenth folds. As illustrated in Figure 3, the resulting optimal assignment varies across folds.17

If only district-level variables are used for targeting, variables which capture the quantity and

quality of antenatal care are the most commonly selected along with the share of newborns

born in public facilities — interestingly, much more commonly than the share predicted to be-

ing born at home, the district prevalence of harmful substance application, or baseline neonatal

mortality rates. The fact that the optimal targeting policies mostly select variables related to the

quality and quantity of antenatal care is consistent with risk factors for neonatal death caused by

sepsis identified using data from verbal autopsies carried out in 6 districts of Nepal in 2012/13.

Erchick et al. (2022) indeed find that having fewer than four antenatal care visits is correlated

with death by sepsis relative to birth asphyxia in multivariate regressions (while home delivery

is not significantly more or less common for any specific cause of neonatal death).

Comparing NMR Reductions with WHO vs. Optimal Targeting. We now turn to predicting

the effect on NMR of targeting different newborns in our sample. Each targeting policy se-

lects different observations to be treated based on their characteristics. To obtain the Average

Treatment Effects on the Treated (Untreated), we apply to each treated (untreated) observation

the doubly-robust estimate or “AIPW” corresponding to their characteristics.18 In Table 5 we

compare the optimal policies obtained with each set of covariates to the 2013-2022 WHO rec-

ommendation of treating only — here, predicted — home births in districts with NMR above

3 percentage points. We also compare to this policy the revised recommendation issued in

2022 of treating only newborns in contexts where the application of harmful substances to the

17In Appendix Table A.8 we report the number of times each covariate is selected in an optimal policy.
18Hence assuming that the rate of compliance is, across all targeting policies, the same as in the actual CHX

program we evaluate in the preceding sections.
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District: delivery at public facility ≤ 0.42

District: delivery at
public facility ≤ 0.38

Treat Do not treat

District: breastfeeding
within 1h ≤0.68

Do not treat Treat

True
(0.48)

True
(0.42)

False
(0.06)

False
(0.52)

True
(0.08)

False
(0.44)

(a) Fold 1

District: iron rate ≤ 0.90

District: prenatal
doc/nurse rate ≤ 0.88

Treat Do not treat

District: antenatal visits
≤4.66

Treat Do not treat

True
(0.30)

True
(0.25)

False
(0.05)

False
(0.70)

True
(0.54)

False
(0.16)

(b) Fold 10

Figure 3: Examples of optimal policies

Notes: Figure 3a shows the optimal policy obtained for the first fold of the data based on all district level variables:
antenatal visits (timing and number), whether received/bought iron tablets during pregnancy, tetanus protection
during pregnancy, place of delivery, postnatal visits, immunization rate, neonatal mortality rate, nurse/doctor
delivery support, small baby, application of potentially harmful substance. Figure 3b shows the optimal policy
obtained for the tenth fold of the data based on the same district level variables. Population shares are shown in
parentheses.

umbilical stump is “common”. In the absence of a published threshold for this practice to be

considered common, we use as threshold the centile of the distribution allowing us to com-

pare the predicted effect on NMR of treating roughly the same proportion of newborns with

the WHO 2013-2022 and WHO 2022 policies. Without imposing any constraint on the share

of treated newborns, the data-driven optimal policies treat between 81 and 83 percent of the

sample compared to only 32 percent of the sample for the WHO 2013-2022 policy (and, by

construction, also our operationalization of the WHO 2022 policy). As a result, the optimal

policies would reduce the neonatal mortality rate by more than the WHO policies (namely, by

1.9 compared to 1.1 percentage points). Interestingly, the benefit of using both district- and

individual-specific variables to design the optimal policy is negligible, compared to only using

district-level variables which are more readily available to policy-makers.

5.2.2 Comparing Further Policies with WHO Recommendations

In this subsection, we consider two further targeting approaches. First, we consider a sim-

ple, practical targeting approach inspired by the optimal policies. Second, we restrict the share

of births to be treated to be similar to the share treated under the WHO recommendations, and

find the optimal targeting policy holding this share constant.

25



Simple Targeting Approach Inspired by the Optimal Policies. Optimal policies vary across

folds so we also study the effect of applying a single targeting rule using the two variables most

commonly selected by the unconstrained optimal policies and their (rounded) cut-off values.

Namely, we study the effect of applying a simple targeting rule based on the district average

number of antenatal care visits being below 4.6 and the district share of deliveries occurring in

public facilities being below 40%. Applying this simple targeting rule results in treating 79%

of newborns and would be predicted to achieve a similar reduction in NMR to that based on the

more complex sets of optimal policies.19

Optimal Targeting of a Limited Share of Newborns. Our — so far — unconstrained policies,

which treat a much larger share of the population than the ones recommended by the WHO, are

predicted to nearly double the mortality reduction but would however also be more expensive

than the WHO recommended ones. When we constrain treatment to target no more than the

number of treated individuals with the WHO policy, the benefits are considerably lower than

with the unconstrained policies and statistically indistinguishable from the WHO 2013-2022

policy (Panel C of Table 5).

5.2.3 Conclusions for Policy Targeting

Taken together, our results show that the WHO guidelines do an excellent job at targeting a

third or so of newborns who would stand to benefit as much as any other from CHX, but also

exclude many newborns whose chance of survival would be much improved by CHX cord care.

Our optimal targeting exercise, which is based on a utilitarian criterion, indicate that it would

be optimal under this criterion to treat many more newborns. This finding should however be

understood with the caveat that a targeting that is optimal according to one welfare criterion

may not be optimal according to a different one. Applying a welfare criterion which would put

a much lower weight on the risk of not treating an individual who might benefit from treatment

than on the risk of treating an individual who might be worse-off if treated may favor a policy

rule closer to the WHO’s — since, as is clear from Figure 2, part of the sample is predicted to

19An even simpler rule treating newborns if the district average number of antenatal care visits is below 4.6
would only result in a marginally smaller share treated and overall NMR reduction.
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Table 5: Reduced mortality and share treated under alternative targeting policies

ATT ATU %treated ∆NMR ∆NMR-∆NMRWHO

A. Pre-defined policies
WHO 2013-2022 -0.036∗∗∗ -0.012∗∗∗ 32.3 -0.011∗∗∗

(0.004) (0.003) (0.001)

WHO 2022 -0.034∗∗∗ -0.012∗∗∗ 31.8 -0.011∗∗∗ 0.000
(0.003) (0.004) (0.001) (0.001)

District average antenatal visits ≤ 4.6 -0.024∗∗∗ -0.001 79.2 -0.019∗∗∗ -0.008∗∗∗

or District share delivered in public fac. <0.4 (0.003) (0.004) (0.002) (0.002)

B. Unconstrained optimal policies
Individual & district variables -0.023∗∗∗ -0.003 81.3 -0.019∗∗∗ -0.007∗∗∗

(0.003) (0.004) (0.002) (0.002)
District variables only -0.023∗∗∗ -0.004 83.2 -0.019∗∗∗ -0.007∗∗∗

(0.003) (0.003) (0.002) (0.002)

District variables only (excl. harmful subst) -0.023∗∗∗ -0.003 83.4 -0.019∗∗∗ -0.007∗∗∗

(0.003) (0.003) (0.002) (0.002)

C. Constrained optimal policies
Individual & district variables -0.041∗∗∗ -0.010∗∗∗ 29.6 -0.012∗∗∗ -0.001

(0.004) (0.003) (0.001) (0.001)
District variables only -0.039∗∗∗ -0.011∗∗∗ 28.5 -0.011∗∗∗ 0.000

(0.005) (0.002) (0.001) (0.001)

District variables only (excl. harmful subst) -0.041∗∗∗ -0.011∗∗∗ 28.7 -0.012∗∗∗ -0.000
(0.005) (0.002) (0.003) (0.001)

Notes: Rows labeled “Individual & district variables” show the reduction in NMR using the optimal policy based on all variables used in the causal
forest (except gender, district fixed effects, and month times year fixed effects) and district level variables: antenatal visits (timing and number), iron
treatments, tetanus protection, place of delivery, postnatal visits, immunization rate, neonatal mortality rate, nurse/doc delivery support, small baby,
share whose mothers self-reports applying a potentially harmful substance to the cord stump. Rows labeled “District variables only [(excl. harmful
subst)]” show the reduction in NMR using the optimal policy based on all district level variables, except for the prevalence of harmful substance
application if so indicated. “Constrained” optimal policies are obtained by adding a cost to the treatment until the proportion of treated individuals
is below that treated under WHO 2013-2022 policy. The last column reports differences between the estimated change in NMR relative to WHO
2013-2022 policy. WHO 2013-2022 policy: treat children born at home in settings (here, districts) with NMR above 3 ppt. WHO 2022 policy: treat
children in settings where the application of harmful substances is common. ATT (ATU) reports the AIPW for all individuals (not) treated with this
policy. Standard errors in parenthesis. Asterisks indicate significance at the following levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.

have near-zero or even adverse treatment effects.20

In the next section, we extrapolate our heterogeneity analysis to other DHS samples in- and

outside Nepal to assess the soundness of our findings and their informativeness beyond Nepal.

6 Extrapolating the Effect of Nepal’s CHX Rolled-Out Pro-

gram across RCT Study Locations

The results of the causal forest suggest that there is substantial heterogeneity in the treat-

ment effect of the Nepalese CHX national program (CHX-NCP), which echoes the fact that
20See also Kowalski (2019), where finite-sample bounds are derived to infer quantities such as the number of

individuals who would die if treated with a new drug based on data from a randomized trial.

27



CHX trials were very successful in reducing NMR in three cases, but had no significant effect

in two other ones.

Objective of the Extrapolation. The treatment is not fully comparable between the RCTs

and the Nepalese national roll-out because of differences such as the number of doses and who

applied CHX, compliance with actual CHX application, as well as, crucially, because RCT sub-

jects in both control- and treatment groups received additional preventive and remedial health

care, which also varied across RCT settings. This additional health care can explain the lower-

than-expected mortality rates observed in the trials’ control groups and may have contributed to

smaller treatment effects. The predicted effect of applying a CHX-NCP-like treatment to sam-

ples drawn from the regions where the RCTs took place should therefore not match the actual

RCT treatment effects even if we could perfectly predict the effect of implementing CHX-NCP

in these regions and the RCT samples and our DHS samples were equally representative of

these regions. The aim of our exercise is therefore to see the extent to which, despite these lim-

itations, the picture of heterogeneity we uncover in the observational Nepalese dataset matches

the general pattern of experimental findings.

Extrapolation Method. We follow the doubly-robust extrapolation approach due to Da-

habreh et al. (2020) as implemented in Tibshirani et al. (2022). More specifically, we construct

samples for each of the five subnational regions and time periods in which the RCTs were

implemented based on the relevant national DHS surveys. We then train a simplified causal

forest in our nationally representative Nepalese dataset based on the restricted set of variables

that we are able to observe in all five samples to predict the Conditional Average Treatment

Effects (CATEs) and the corresponding doubly-robust treatment effects (AIPWs) for each RCT

setting.21

21We use the same orthogonalization as in the main results described above. However, to make the causal
forest comparable across the five samples, the forest is estimated on a reduced set of variables consisting of birth
order, gender, maternal age, rural location, maternal education, predicted place of delivery, and wealth quintile, as
well as 14 district level variables observed in all samples. The fit and results for this forest are shown in column (2)
of Appendix Table C.2. When computing AIPWs accounting for differences in the distribution of variables in our
main Nepal sample and the five RCT settings subsamples, we further need to drop the district-level variables from
the causal forest as these otherwise perfectly predict whether the observation is found in the main Nepal sample
or not. The fit and results for this forest are shown in column (3) of Appendix Table C.2. Restricting the set of
covariates affects the forest’s overall performance in predicting treatment effect differences, but not its ability to
predict the difference in average treatment effect between predicted home- and facility births, for instance (see
column (2) relative to column (1) in Appendix Table C.2).
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Comparison of Extrapolated Average Effects of CHX-NCP with RCT Findings. Table Ap-

pendix A.9 first shows the control group NMR rates reported in the RCT studies. Consistent

with the additional health care provided as part of these RCTs, these NMR rates are between

0.5 and 3.2 percentage points smaller than those observed in the DHS samples (reported in

Panel B), which holding all else equal should lead to smaller treatment effects. We then report

the average estimated doubly-robust treatment effects (AIPWs) of implementing the Nepalese

CHX rolled-out program across the five samples. As expected, we predict larger decreases in

neonatal mortality from extrapolating the effect of the national roll-out than those found in the

trials. But we predict large, statistically significant average treatment effects in the three sam-

ples corresponding to areas where RCTs found that CHX trials significantly reduced neonatal

mortality whereas, for the two samples corresponding to the regions where the RCTs show no

significant effects of CHX cord care interventions, the predicted average treatment effects of a

hypothetical national roll-out are smaller and statistically insignificant.

Heterogeneity Between- and Within RCT Locations. In the rest of Table A.9, we report the

average predicted CATEs which enter the computation of the doubly robust treatment effects,

and characteristics of the different samples used in the forest to illustrate the variety of settings.

In Appendix Figure A.8, we report the distributions of predicted CATEs in each setting, which

shows that there is substantial predicted heterogeneity both between-settings and within each

setting too. In particular, sizeable shares of predicted zero- and even positive treatment effects

are observed only in the Tanzanian and Zambian subsamples, where RCTs found no significant

effect. There are also substantial differences across settings in the distribution of treatment

effects given predicted place of delivery, as well as within each setting for a given predicted

place of delivery — again suggesting that place of delivery is a useful but blunt proxy for the

effectiveness of CHX cord cleansing at scale.

7 Conclusion

Neonatal mortality is an increasingly large contributor to early life mortality across the

world, accounting for 45% of under-5 deaths in 2015 compared to 35% in 1980 (Wang et al.,
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2016), and most neonatal deaths are believed to be preventable at comparatively low cost

(Bhutta et al., 2014). Hopes that CHX cord care would be a “game changer” (Hodgins et al.,

2013) faded away as heterogeneous findings across randomized trials led experts to question its

effectiveness at scale despite the fact that these trials, for obvious ethical reasons, cannot pro-

ceed with a pure control and may therefore underestimate the effectiveness of a CHX program

as implemented outside experimental circumstances.

In this paper, we estimate the effect of implementing a nationwide program rolling out

CHX cord care. We find that the program led to a large reduction in neonatal mortality (36

percent), driven by reduced neonatal mortality among newborns predicted to have been born at

home. This provides novel evidence of the effectiveness of CHX cord care outside an experi-

mental setting, and one of the few instances of evidence of a successful nationwide intervention

targeting neonatal mortality in a low-income country.

Using recently developed machine learning techniques, we find evidence of substantial het-

erogeneity in treatment effects in our nationally representative Nepalese observational data.

While place of delivery and average neonatal mortality are good proxies for large treatment

effects, the optimal targeting we identify implies treating more than two-and-a-half times more

births than the WHO recommendation based on these two variables, which prevailed during

2013-2022. In addition, we find no evidence that the recent 2022 revised WHO recommenda-

tion to treat only births in settings where the application of harmful substances to the umbilical

stump is common is likely to improve targeting relative to the 2013-2022 recommendation. We

indeed estimate very similar overall neonatal mortality improvements from either approach to

targeting a similar share of newborns, and find that larger conditional treatment effects are less

strongly associated with district prevalence of harmful substance application than with home

delivery.

Our findings regarding optimal targeting come with two important caveats. First, the tar-

geting of any policy (for which treating everyone is either not affordable or not desirable due

to potential adverse consequences) should be regularly reviewed since, in many applications

and ours in particular, the distribution of treatment effects may evolve over time. Targeting by

place of birth may, for instance, become less appropriate if hospital quality deteriorates with
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increased demand relative to supply over time or if home births become less conducive to in-

fection due to wider use of safe delivery kits. Second, our conclusions are based on a utilitarian

criterion. But a targeting that is optimal according to one welfare criterion (e.g., utilitarian) may

not be optimal according to a different one (e.g., one that puts unequal weights on the risks of

not treating an individual who might benefit from treatment versus treating an individual who

might be worse-off if treated).

Finally, we extrapolate the causal forest heterogeneity analysis carried out in our national

Nepalese sample to five settings in as many countries. Despite substantial differences in the

nature of the intervention and control group in- and outside trials as well as between trials, the

doubly-robust predicted effects of implementing the same program as that rolled out in Nepal

across these five settings matches the broad pattern of heterogeneous experimental results. This

bolsters our confidence in the heterogeneity analysis based on the Nepalese roll-out and its

relevance for settings outside Nepal and thus suggests that CHX may be beneficial in a much

wider set of circumstances than the current received wisdom would indicate.
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Appendix - For Online Publication

A Additional results

Figure A.1: CHX cord application roll-out across districts over time.
Notes: Districts where CHX-NCP has been rolled out are in green. Source: JSI administrative records.

Table A.1: CHX introduction does not predict place of delivery or antenatal care

Dependent variable:
Home ANC

Delivery visits

t ≥ CHX introduction -0.032 0.222
(0.029) (0.139)

MDV 0.411 4.361
Observations 3,614 2,938

Notes: Both specifications are estimated as BJS (Borusyak et al., 2024) without
controls. Standard errors clustered at the district level in parentheses. MDV is
the mean of dependent variable among untreated individuals. Asterisks indicate
significance at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Table A.2: Programs relevant to neonatal mortality

Name Overview Implementation Detail

1 Community Based Integrated Management of multiple illnesses Rolled out to all 75 districts
Management of Childhood from birth to age 5 between 1997 and 2009
Illness (CB-IMCI)

2 Birth Preparedness Program Encourage institutional delivery, Introduced in all districts
antenatal care and preparation in 2008/2009
for complications

3 Safe Delivery Incentive Program Subsidy for 25 districts in 2006
institutional delivery then all districts from 2009

4 Aama and Newborn Program Cash incentives for 4 ANC visits Introduced in all districts
Free delivery care from 2015/16
Free sick newborn care

5 Nyano Jhola Clothes to prevent Introduced in all districts
hypothermia and infection in 2015/16

6 Rural Ultrasound Program Trained skilled birth assistants Rolled out from 2 to 14
to use portable ultrasound machine districts between 2012 and 2017

7 Nepal Agriculture and Food Combined agricultural 22 districts during
Security Project and nutritional intervention 2013-2017

8 Community Action for Improve nutrition and reduce 15 districts during
Nutrition Project (Sunaula) exposure to smoking 2012 to 2017

and indoor pollution
during pregnancy

9 Suaahara I Project Multisectorial intervention to 16 districts from 2011 then
improve nutrition from conception 41 districts from 2016
to 24 months

10a Community Based Prevent and manage newborn Rolled out from 10 to 41
Newborn Care Program (CB-NCP) infections, hypothermia and districts between 2009-14

low birth weight
Manage asphyxia
Referral of sick newborns

10b Community Based Integrated CB-NCP (10a) integrated into Rolled out from 30 to 75 districts
Management of Newborn CB-IMCI (1) between 2014/15 and 2016/17
and Childhood Illness (CB-IMNCI)

11 Chlorhexidine “Navi” (Cord) Care Introduction of CHX cord care Rolled out from 4 to 75
Program (CHX-NCP) for all births between 2009 and 2017

Source: Department of Health Services-Ministry of Health (1617), USAID (2017), Bhattarai (2017).
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Figure A.2: Specification curve

Notes: All specifications are estimated using the BJS (Borusyak et al., 2024) imputation method. This chart shows
estimates from running 54 different specifications defined by the combination of markers bellow the chart. The
black square marker indicates out main specification. Demographic controls include birth order (three indicators),
five year maternal age group indicators, and gender. SES controls include education (three indicators), wealth
(four indicators), rural indicator, altitude quintile indicators, and ethnicity indicators. Program controls include
controls for the CB-NCP and CB-IMNCI health programs. Other shocks refer to the earthquake on 25 April 2015,
the Community Action for Nutrition Project (Sunaula), an Integrated Nutrition Program (Suaahara), and the Safe
Delivery Incentive Program. Initial NMR × CMC is the initial neonatal mortality times a quadratic time trend.
The rows ”>=2044”, ”>=2049”, and ”>=2054” indicate the birth cohorts included, in Nepali calendar years.
”No mobility” indicates that we restrict the sample to individuals who have not moved in the last eight years. The
confidence intervals are based on standard errors clustered at the district level.
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Figure A.3: Neonatal mortality, CB-NCP coverage, CB-IMNCI coverage, and CHX-NCP
coverage
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Table A.3: Variable means

Mean

A. Demographics and SES
Female 0.48
First born 0.34
Second born 0.28
Third born 0.18
Parity four or higher 0.21
Mother age 15-19y 0.20
Mother age 20-24y 0.41
Mother age 25-29y 0.26
Mother age 30-34y 0.10
Mother age 35-39y 0.03
Mother age 40-45y 0.01
Ethnicity: hill brahmin 0.09
Ethnicity: hill chhetri 0.23
Ethnicity: terai brahmin/chhetri 0.01
Ethnicity: other terai caste 0.14
Ethnicity: hill dalit 0.11
Ethnicity: terai dalit 0.04
Ethnicity: newar 0.02
Ethnicity: hill janajati 0.18
Ethnicity: terai janajati 0.10
Ethnicity: muslim 0.06
Ethnicity: other 0.00
Rural 0.41
Education: no education 0.57
Education: primary 0.18
Education: secondary 0.19
Education: higher 0.06
Wealth 0-20% 0.27
Wealth 20-40% 0.22
Wealth 40-60% 0.20
Wealth 60-80% 0.17
Wealth 80-100% 0.13
Altitude in 1st quintile 0.20
Altitude in 2nd quintile 0.20
Altitude in 3rd quintile 0.19
Altitude in 4th quintile 0.20
Altitude in 5th quintile 0.20

B. Health programs
Program: CB-NCP 0.16
Program: CB-IMNCI 0.05

C. Child mortality
Child died ≤1m 0.04
Child died <1m 0.03
Child died ≤12m 0.06
Child died ≤12m & >1m 0.01

Observations 23,465
Notes: Except for the variables measuring child gender and
birth order, all variables in panel A are capturing mother char-
acteristics. Panel B. shows means for whether the child was
covered by the health programs CB-NCP and CB-IMNCI.41



Table A.4: Predicting home deliveries

DHS 2016 DHS 1996-2016
Logit LPM Logit LPM

(1) (2) (3) (4)

Female 0.004 0.006 0.003 0.003
(0.012) (0.012) (0.004) (0.004)

First born -0.248∗∗∗ -0.267∗∗∗ -0.184∗∗∗ -0.203∗∗∗

(0.026) (0.027) (0.009) (0.012)
Second born -0.090∗∗∗ -0.112∗∗∗ -0.085∗∗∗ -0.082∗∗∗

(0.019) (0.022) (0.007) (0.008)
Third born -0.022 -0.029 -0.044∗∗∗ -0.036∗∗∗

(0.017) (0.019) (0.007) (0.006)
Mother age 15-19y 0.069 0.067 0.130∗∗∗ 0.151∗∗∗

(0.062) (0.065) (0.023) (0.019)
Mother age 20-24y 0.034 0.039 0.088∗∗∗ 0.094∗∗∗

(0.059) (0.063) (0.022) (0.017)
Mother age 25-29y 0.015 0.018 0.045∗∗ 0.046∗∗∗

(0.057) (0.062) (0.021) (0.015)
Mother age 30-34y -0.048 -0.046 0.018 0.020

(0.059) (0.064) (0.020) (0.015)
Mother age 35-39y -0.040 -0.048 0.004 0.005

(0.060) (0.064) (0.024) (0.017)
Rural 0.120∗∗∗ 0.130∗∗∗ 0.115∗∗∗ 0.171∗∗∗

(0.025) (0.029) (0.010) (0.016)
Education: no education 0.146∗∗∗ 0.137∗∗∗ 0.255∗∗∗ 0.369∗∗∗

(0.030) (0.027) (0.013) (0.017)
Education: primary 0.104∗∗∗ 0.082∗∗∗ 0.191∗∗∗ 0.302∗∗∗

(0.030) (0.026) (0.014) (0.016)
Education: secondary 0.071∗∗∗ 0.035∗ 0.102∗∗∗ 0.142∗∗∗

(0.027) (0.020) (0.012) (0.015)
Observations 4,911 4,956 26,975 26,986
Correct predictions (share) 0.759 0.761 0.726 0.719

Notes: Columns (1) and (2) are based on the recent births subsample of DHS 2016 (MoH, New ERA and ICF,
2017). In columns (3) and (4) the prediction is trained based on stacked recent births subsamples of DHS from
1996 to 2016 (Pradhan et al., 1997; MoH, New ERA and ORC Macro., 2002; MoHP, New ERA and Macro In-
ternational, 2007; MoHP, New ERA and ICF, 2011; MoH, New ERA and ICF, 2017). Columns (1) and (3) show
average marginal effects from estimating a Logit specification. Columns (2) and (4) show point estimates from
estimating a linear probability models. All regressions include district fixed effects and date of birth, defined by
Nepali month and year of birth, fixed effects. Predictions are for the 2016 recent births subsample for compara-
bility. Standard errors clustered at the district level in parentheses. Asterisks indicate significance at the following
levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure A.4: Estimated propensity score for the prediction of place of delivery.
Notes: See Table A.4 for estimation details.
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Table A.5: Effect of CHX-NCP on neonatal mortality using survey weights

(1) (2) (3) (4)

t ≥ CHX introduction -0.012∗∗ -0.014∗ 0.002 -0.020
(0.005) (0.007) (0.010) (0.014)

t−1 0.014 0.014 0.017 0.039
(0.025) (0.027) (0.035) (0.050)

t−2 -0.004 -0.008 0.010 -0.019
(0.022) (0.020) (0.025) (0.042)

t−3 -0.010 -0.010 0.005 -0.059∗∗∗

(0.016) (0.016) (0.011) (0.022)
t−4 0.005 0.004 0.000 0.013

(0.036) (0.036) (0.038) (0.050)
t−5 -0.017 -0.021 -0.028 -0.022

(0.025) (0.026) (0.019) (0.052)
t−6 -0.002 -0.005 -0.000 0.023

(0.022) (0.022) (0.013) (0.060)

P-val 0.966 0.965 0.800 0.169
Observations 23,449 23,449 10,855 12,387
MDV 0.042 0.042 0.032 0.051

Sample All All PH < 0.5 PH > 0.5
Controls No Yes Yes Yes
Month of birth FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Notes: P-value shows the p-value for the joint test that all lags are zero. MDV is the
mean of dependent variable among untreated individuals. BJS is the Borusyak et al. (2024)
imputation estimator as described in the main text. Bootstrapped standard errors clustered
based on 500 iterations at the district level in parentheses. Asterisks indicate significance
at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Table A.6: Effect of CHX-NCP on neonatal mortality based on stacked predictions

(1) (2) (3) (4)

t ≥ CHX introduction -0.010∗ -0.015∗∗ 0.022∗ -0.038∗∗∗

(0.005) (0.007) (0.011) (0.013)
t−1 0.017 0.015 -0.010 0.044

(0.026) (0.026) (0.031) (0.052)
t−2 0.001 -0.004 0.015 -0.013

(0.020) (0.019) (0.029) (0.028)
t−3 -0.007 -0.009 0.013 -0.031

(0.019) (0.019) (0.025) (0.033)
t−4 0.002 -0.001 -0.013 0.051

(0.033) (0.032) (0.026) (0.076)
t−5 -0.010 -0.013 -0.020 -0.012

(0.029) (0.028) (0.012) (0.062)
t−6 0.015 0.009 0.012 0.003

(0.025) (0.025) (0.029) (0.047)

P-val 0.987 0.988 0.668 0.682
Observations 23,449 23,449 5,949 17,425
MDV 0.042 0.042 0.019 0.043

Sample All All PH < 0.5 PH > 0.5
Controls No Yes Yes Yes
Month of birth FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Notes: P-value shows the p-value for the joint test that all lags are zero. MDV is the
mean of dependent variable among untreated individuals. BJS is the Borusyak et al. (2024)
imputation estimator as described in the main text. Bootstrapped standard errors clustered
based on 500 iterations at the district level in parentheses. Asterisks indicate significance
at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Table A.7: CHX-NCP effects are independent of other neonatal health programs

Dependent Variable: Neonatal Mortality
(1) (2) (3) (4) (5)

A. The effect of CHX
CHX -0.011∗∗∗ -0.008∗ -0.014∗∗∗ -0.025∗∗∗

(0.004) (0.005) (0.004) (0.004)
Observations 23,449 19,781 22,295 19,223

B. The effect of CB-NCP
CB-NCP 0.008

(0.006)
Observations 23,465 23,465 23,465 23,465 20,321

B. The effect of CB-IMNCI
CB-IMNCI 0.005

(0.006)
Observations 23,465 23,465 23,465 23,465 20,303

Observations|CHX==1 3144 639 2290 302
Sample All CB-NCP==0 CB-IMNCI==0 CB-NCP==0 & CHX==0

CB-IMNCI==0

Notes: All estimates are obtained with the BJS Borusyak et al. (2024) imputation estimator using the full set of
demographic and SES controls. Demographic controls include birth order (three indicators), five year maternal
age group indicators, and gender. SES controls include education (three indicators), wealth (four indicators), rural
indicator, altitude quintile indicators, and ethnicity indicators. Standard errors clustered at the district level in
parentheses. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure A.5: Event study chart

Notes: The chart shows the time to event effects based on the BJS (Borusyak et al., 2024) imputation
estimator. The shaded areas show the 95% confidence intervals based on standard errors clustered at
the district level.
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Figure A.6: Contribution to CATE variation
Notes: This Figure shows the R-squared from estimating an ordinary least squares regression of the
CATE on the covariates listed on the vertical axis. The “3 WHO variables” are: predicted place of
delivery indicator, district NMR and district average harmful substances application.
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Figure A.7: Doubly robust ATEs by tertiles of CATEs
Notes: The Augmented Inverse-Propensity Weighted (AIPW) Average Treatment Effects are estimated
for tertiles of the conditional average treatment effects shown in Figure 2. The p-values for H0 of equal
treatment effects in the first and third tertiles are : p<0.001 for the full sample ( p<0.001 for predicted
home births and p<0.001 for predicted facility births).
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Table A.8: Variables selected by optimal policies

Unconstrained Constrained
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Birth order 0 0 0 1 0 0 1
District: antenatal visits 8 4 4 0 0 0 16
District: antenatal visits in 1. trimester 0 2 2 3 10 10 27
District: antenatal visits≥4 0 0 0 2 8 8 18
District: control NMR 0 2 2 1 2 2 9
District: delivery assisted by doc/nurse 0 1 1 0 1 1 4
District: delivery home 1 0 1 5 0 0 7
District: delivery in public facility 0 6 6 0 7 7 26
District: delivery private 1 1 1 0 0 0 3
District: full immunization 5 0 0 0 1 1 7
District: harmful substances 0 1 0 0 0 0 1
District: iron tablets during pregn. 3 1 1 2 0 0 7
District: postnatal check within 2days 0 3 3 0 0 0 6
District: prenatal care by doc/nurse 0 3 3 0 0 0 6
District: started breastfeeding ≤ 1h 1 4 4 0 0 0 9
District: tetanus protected 0 2 2 0 0 0 4
District: unassisted delivery 0 0 0 5 1 1 7
Maternal age 5 0 0 1 0 0 6
Maternal education 5 0 0 10 0 0 15
Predicted home delivery 1 0 0 0 0 0 1

Notes: this table shows how often each variable is included in the optimal policy across the ten folds
for the six optimal policies indicated by the column headers.
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Table A.9: Extrapolating the effect of CHX-NCP across CHX trial locations

Bangladesh Nepal Pakistan Tanzania Zambia
2007-2009 2002-2005 2007 2011-2014 2011-2013

RCT Data:
Control Neo. Mortality 0.028 0.019 0.036 0.012 0.014
Treatment Effect -0.006 -0.005 -0.013 -0.001 0.002

DHS Data:
A. Doubly Robust Treatment Effects

AIPW -0.021∗∗ -0.023∗∗∗ -0.038∗∗∗ -0.016 -0.007
(0.009) (0.005) (0.005) (0.017) (0.005)

B.Variable means
CATE -0.017 -0.023 -0.024 -0.004 -0.004
Neonatal mortality 0.033 0.051 0.044 0.019 0.020
Predicted home delivery 0.942 0.642 0.909 0.239 0.061
Female 0.488 0.555 0.464 0.553 0.488
Mother age 15-19y 0.196 0.168 0.071 0.086 0.153
Mother age 20-24y 0.374 0.453 0.270 0.233 0.253
Mother age 25-29y 0.214 0.182 0.306 0.248 0.233
Mother age 30-34y 0.071 0.036 0.071 0.145 0.114
Mother age 35-39y 0.014 0.000 0.052 0.088 0.046
Birth order: 1 0.239 0.204 0.179 0.162 0.194
Birth order: 2 0.243 0.263 0.135 0.147 0.200
Birth order: 3 0.204 0.197 0.167 0.122 0.145
Birth order: ≥4 0.314 0.336 0.520 0.569 0.460
Education: none 0.325 0.854 0.873 0.395 0.061
Education: primary 0.353 0.073 0.079 0.258 0.535
Education: secondary 0.298 0.058 0.048 0.347 0.356
Education: higher 0.024 0.015 0.000 0.000 0.048
Wealth quintile: 1 0.294 0.058 0.631 0.019 0.131
Wealth quintile: 2 0.214 0.234 0.222 0.189 0.256
Wealth quintile: 3 0.195 0.409 0.091 0.277 0.288
Wealth quintile: 4 0.160 0.248 0.056 0.368 0.177
Wealth quintile: 5 0.138 0.051 0.000 0.147 0.148
Rural 1.000 0.409 1.000 0.889 0.704

Observations 637 137 252 476 854
Notes: Average CATE based on predictions using the causal forest estimated on the country-wide Nepal sample
using a reduced set of variables as shown in Appendix Table C.2 Column (2). AIPW based on predictions using
the causal forest estimated on the country-wide Nepal sample using a reduced set of variables which do not
perfectly predict whether an observation is from the country-wide Nepalese sample or the RCT samples as shown
in Appendix Table C.2 Column (3). The table also shows the neonatal mortality rate observed in the relevant DHS
subsample and the averages of the demographic and SES variables used in the forests. The samples are taken
from the same years and regions as those covered in the respective trials. Namely, we include 2007-2009 births
in rural areas of Sylhet from DHS Bangladesh 2011, 2002-2005 births in Sarlahi district from DHS Nepal 2016,
2007 births in rural areas of Sindh from DHS Pakistan 2012-13, 2011-2014 births in Pemba Island from DHS
Tanzania 2015-16, and 2011-2013 births in Southern Province from DHS Zambia 2013-14. Standard errors for
the doubly-robust average treatment effect in parenthesis. Asterisks indicate significance at the following levels:
∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure A.8: Distribution of predicted CATEs across DHS samples matching the RCT sites
Notes: The distributions are estimated using bandwidth selected based on Silverman’s ‘rule of thumb’
(Silverman, 1986) and a gaussian kernel.
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B Two-Way Fixed Effects (TWFE) Estimates

Table B.1: TWFE regression results - the effect CHX on neonatal mortality

Sample

All All
P(home birth)
<0.5 >0.5

(1) (2) (3) (4)

CHX -0.018∗∗ -0.007 0.001 -0.028∗∗

(0.007) (0.007) (0.009) (0.011)
1[P(home birth)>0.5] -0.001

(0.005)
CHX × 1[P(home birth)>0.5] -0.021∗∗∗

(0.008)
CHX + CHX × 1[P(home birth)>0.5] -0.028∗∗∗

(0.008)
Observations 23,465 23,465 10,860 12,605
Clusters 73 73 73 73
Control mean of dep. var 0.042 0.042 0.033 0.050
P-val (dif across sample) 0.031

Notes: All specifications are estimated as linear probability models using OLS with the full set of demo-
graphic, SES, and program controls. Demographic controls include birth order (three indicators), five year
maternal age group indicators, and gender. SES controls include education (three indicators), wealth (four
indicators), rural indicator, altitude quintile indicators, and ethnicity indicators. Program controls include
controls for the CB-NCP and CB-IMNCI health programs. All specifications are estimated with district
and month of birth fixed effects. We split the sample according to the predicted place of delivery, based
on the linear probability model shown in Appendix Table A.4 Column (4). Bootstrapped standard errors
based on 200 iterations and clustered at the district level in parentheses. Asterisks indicate significance at
the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Table B.2: TWFE Balancing table. Dependent variable: CHX.

(1)

Female 0.000
(0.002)

First born 0.001
(0.004)

Second born -0.003
(0.004)

Third born -0.006
(0.004)

Mother age 15-19y -0.026
(0.027)

Mother age 20-24y -0.027
(0.027)

Mother age 25-29y -0.026
(0.027)

Mother age 30-34y -0.028
(0.028)

Mother age 35-39y -0.026
(0.029)

Ethnicity: hill chhetri -0.005
(0.006)

Ethnicity: terai brahmin/chhetri -0.003
(0.010)

Ethnicity: other terai caste -0.006
(0.008)

Ethnicity: hill dalit 0.006
(0.006)

Ethnicity: terai dalit 0.006
(0.010)

Ethnicity: newar 0.007
(0.010)

Ethnicity: hill janajati 0.000
(0.006)

Ethnicity: terai janajati 0.001
(0.007)

Ethnicity: muslim -0.008
(0.007)

Ethnicity: other 0.052∗∗

(0.025)
Rural -0.007∗

(0.004)
Education: no education 0.016

(0.011)
Education: primary 0.021∗

(0.012)
Education: secondary 0.014

(0.010)
Wealth 0-20 (0.006)
Wealth 20-40 (0.006)
Wealth 40-60 (0.005)
Wealth 60-80 (0.006)
Altitude in 1st quintile 0.013

(0.011)
Continued on next page
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Continued from previous page

(1)

Altitude in 2nd quintile 0.003
(0.009)

Altitude in 3rd quintile -0.007
(0.007)

Altitude in 4th quintile -0.000
(0.007)

Program: CB-NCP 0.373∗∗∗

(0.069)
Program: CB-IMNCI -0.063

(0.082)
Constant 0.095∗∗∗

(0.033)
Observations

Notes: The specifications are estimated with district and month
of birth fixed effects. Standard errors clustered at the district
level in parentheses. Asterisks indicate significance at the fol-
lowing levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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C Details of the Machine Learning Procedure

C. 1 Training the Causal Forest
To assess treatment effect heterogeneity we train a causal forest using the grf package in R
(Athey et al., 2019; Tibshirani et al., 2021). Concretely, we proceed in the following two steps.

Step 1 We use regression forests to estimate the following two conditional mean functions

µW = E[W |X = x] (1)
µY = E[Y |X = x] (2)

where W is equal to 1 if the child was born in a district and month where the CHX
program was implemented and 0 otherwise, Y is 1 if the child died within the first month
after birth and 0 otherwise, and X is a set of indicator variables capturing the district
of birth, the month-year date of birth, whether the CB-IMNCI program is implemented,
and whether CB-NCP is implemented in the district. Using the fitted conditional mean
functions we construct the residuals, W −µW and Y −µY .

Step 2 We use the residuals from the first step to train a causal forest which we use to estimate
the conditional average treatment effects (CATEs):

τ(X) = E[Y (1)−Y (0)|X = x] (3)

where Y () are the potential outcomes and X contains birth order, maternal education,
maternal age, wealth, district, altitude, rural, predicted place of delivery, health programs,
district, ethnicity; and district-level averages for: antenatal care (ANC) visits (timing
and number), whether iron tablets were received during ANC visits, tetanus protection,
place of delivery, postnatal visits, immunization rate, neonatal mortality, nurse or doctor-
assisted delivery, and whether the baby was considered small at birth.

For the categorical variables (ethnicity and district) we use the sufficient representation
approach where we compute and include group means of the non-categorical variables
based on the groups defined by the categorical variables.

In training the causal forest we tune all parameters by cross-validation. For non-tuned
parameters we use the default settings, except that we set the forest to be clustered at
the district level and we allow clusters to have different weights. The latter setting has
very little practical implication in our setting. The chosen parameter settings are listed in
Table C.1.

Having specified the parameter settings, we grow a tree as follows:

(i) We sample 50% of the original analysis sample and 30 of the variables.

(ii) The sample selected in (i) is split into two equally sized sub-samples. One sub-
sample is used to find the splitting structure of the tree. The second sample is used
for populating the trees.

(iii) The sample for splitting found in (ii) is split into two groups (nodes) using the vari-
able among the 30 selected in (i) that creates the best split. The best split maximizes
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treatment effect heterogeneity across the two groups and minimizes the variance in
treatment effect heterogeneity within the groups.

(iv) The tree is grown by repeating step (iii) on the created groups until there is no valid
split (for example if the number of observations is smaller than 5) or if there is no
split that improves the fit sufficiently. A group that is not split further is called a
leaf.

(v) Using the splitting structure found in (iv) the tree is populated using the second
sub-sample created in (ii) and the outcomes are predicted based on these observa-
tions. In other words the hold out sub-sample for populating the trees runs through
the decision tree (the splitting) and these observations are then used to obtain an
estimate of the leaves’ treatment effects.

Steps (i) to (v) create a tree and these five steps are repeated 2000 times to create the
forest. Having created the forest, an observation’s predicted conditional treatment effect
(CATE) is created based on the average predicted outcome for the leaves the observation
ends up in across all trees where this observation was not used to split and populate the
trees, i.e., based on the out-of-bag prediction.

Table C.1: Causal Forest Settings

Setting Value Selection criteria

Number of trees 2000 Default
Clustering District Choice
Fraction of sample used to grow each tree 0.5 Cross-validation
Number of variables considered for each split 30 Cross-validation
Minimum size of a leaf node 5 Cross-validation
Fraction of sample used for splitting 0.5 Cross-validation
Prune empty leaves True Cross-validation
Maximum imbalance of a split (alpha) 0.05 Cross-validation
Penalization of imbalance splits 0 Cross-validation

Note: The table shows the parameter settings for the main causal forest. None of the parameters selected by
cross-validation are different to the default setting.

C. 2 Distribution of propensity scores and covariates
Figure C.1 shows the distribution of propensity scores (i.e., the estimated values of the µW from
Step 1 described above). These scores should be between 0 and 1 (not including 0 and 1), which
is the case in our setting.
Another important condition for the causal forest is that the features have common support
across treatment status. Figures C.2 to C.5 suggest that this is the case in our setting.
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Figure C.1: Propensity scores for causal forest
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Figure C.2: Inverse-propensity score weighted distributions treated and control observations
for individual covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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Figure C.3: Inverse-propensity score weighted distributions treated and control observations
for district covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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Figure C.4: Inverse-propensity score weighted distributions across treated and control
observations for ethnicity demeaned covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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C. 3 Alternative causal forest specifications
In Table C.2 we show results for three different specifications of the causal forest. Column

(1) shows the main forest using the settings described above. Column (2) shows the results
from training a forest using a smaller set of variables in step 2. This specification is used to
obtain predictions of the CATEs for the five RCT locations. Column (3) shows the result of
a specification based on the same variables used in specification (2), except for the district
level variables, which perfectly predict whether the observation is in the main analysis sample
(countrywide Nepal) or in the samples drawn from DHSs carried out in the RCT locations.
This last specification is used to allow us to obtain the doubly-robust average treatment effects
reported in Table A.9.
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Table C.2: Causal forest specifications for extrapolation exercise - diagnostic test and average
treatment effects

Overlapping Overlapping
Main variables variables w/out

dist. averages
(1) (2) (3)

A. Omnibus diagnostic test for forest fit
Mean Forest Prediction 1.123∗∗∗ 1.078∗∗∗ 1.051∗∗∗

(0.255) (0.253) ( 0.235)
Differential Forest Prediction 0.677∗ 0.312 0.205

(0.479) (0.385) (0.217)

B. Doubly Robust Average Treatment Effects
Full sample -0.019∗∗∗ -0.020∗∗∗ -0.021∗∗∗

(0.003) (0.003) (0.003)
Predicted facility births -0.007∗∗ -0.008∗∗ -0.007∗

(0.004) (0.004) (0.004)
Predicted home births -0.030∗∗∗ -0.031∗∗∗ -0.033∗∗∗

(0.004) (0.004) (0.003)
Notes: The table shows results from estimating the causal forest using three different sets of variables. All speci-
fications are based on the same orthogonalization based on district fixed effects, month-year of birth fixed effects
as well as indicators for the CB-IMNCI and CB-NCB programs. Column (1) shows the results for the main spec-
ification where the forest is built based on indicators for CB-IMNCI and CB-NCB health programs, indicators for
wealth and altitude quintiles, indicators for maternal education, indicators for birth order, indicators for maternal
age group, a rural indicator, a child gender indicator, an indicator for predicted home delivery, and district level av-
erages of: antenatal care (ANC) visits (timing and number), whether iron tablets were received during ANC visits,
tetanus protection, place of delivery, postnatal visits, immunization rate, neonatal mortality rate, delivery support
by a nurse or doctor, and share of newborns considered small at births. Moreover, following the means-encoding
approach presented in Johannemann et al. (2019), in (1) the categorical variables district and ethnicity are included
through demeaned versions of the other variables by, respectively, district and ethnicity. In Column (2) the forest
is built on the same set of variables as in (1) except for the ethnicity and district demeaned variables, the indicators
for the CB-NCB and CB-IMNCI programs, the district level measure of iron tablets received, tetanus protection,
the measure of timing of antenatal visits, and postnatal visits, which are either inapplicable outside Nepal (in the
case of the health programs) or not consistently available across all DHS location samples. Column (3) is showing
results for a forest built only on birth order, gender of the child, maternal age, maternal age indicators, maternal
education indicators, wealth quintile, and predicted place of delivery. Standard errors clustered at the district level
in parentheses. Following Athey et al. (2019), the p-values for the omnibus diagnostic test are for the one-sided
hypothesis test. Asterisks indicate significance at the following levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure C.5: Inverse-propensity score weighted distributions across treated and control
observations for district demeaned covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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